
UCRL-TR-207393

Babel 1.0 Release Criteria: A
Working Document

Gary Kumfert, Tamara Dahlgren, Thomas
Epperly, James Leek

October 21, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Babel 1.0 Release Criteria: A Working Document
Gary Kumfert, Tamara Dahlgren, Thomas Epperly, James Leek

December 2003

(updated October 2004 after version 0.9.6)

Overview
In keeping with the Open Source tradition, we want our Babel 1.0 release to

indicate a certain level of capability, maturity, and stability. From our first release
(version 0.5.0) in July of 2001 to our current (18th) release (version 0.9.6) we have
continued to add capabilities in response to customer feedback, our observations
in the field, and a consistent vision for interoperability. The key to our maturity is
without a doubt the ever-increasing demands of our growing user base… both in
terms of sheer size and sophistication with the underlying technology.

Stability is a special challenge for any research project. With our 1.0 release,
we will branch and maintain a stable Babel 1.0 code line for at least a full year.
This means no new features and no backward incompatible changes, only bug
fixes. All continuing R&D will be performed on a separate development tree.
Currently, Babel has a quarterly release cycle with no guarantee for backward
compatibility from one release to the next (though we certainly try to make
migration as painless as possible).

Now is the time where we can see a good point for a Babel 1.0 release. But,
seeing that point is different from being there. This list enumerates and explains
the outstanding technical issues to be resolved to minimize volatility and help
ensure stability for the 1.0 line.

The first draft of this document was circulated internally in June 2003. A
revised draft was then presented at the July 2003 CCA meeting. A third revision
was made into the current working document form & circulated for general
comment on the babel-users mailing list and Babel’s homepage. The working
document was intended to be an open record tracking progress in subsequent
Babel releases. A major revision of the document (including adding new items
and promoting/demoting itmes) was done in October 2004, well after the 0.9.6
release.

Table of Contents

To-Do Items for 1.0 3

1. Parser ..3
a. Regularize Type Resolution Behavior ..3
b. Allow XML overwrites (added Oct 2004)...3

2. SIDL ...3
a. Add global scope indicator (.) (like leading :: in C++)3
b. Resolve issues with multiple inheritance induced overloading4

3. IOR...4
a. Access super methods in Impls ..4
b. RMI hooks ..5
c. Pre/post method hooks...5
d. Static Class Initializer a.k.a. “_load()” (added Oct 2004).........................5

4. Runtime..5
a. Better shared library lookup in SIDL.Loader ...5
b. Move Base Classes from “SIDL” package to “sidl” package...................6
c. Change SIDL.BaseException from a class to an Interface6

5. Arrays...6
a. Increase max dimension from 4 to 7...6
b. Array Base Classes (Added Oct 2004) ...6

6. C++ ..7
a. Resolve issues with overloading based on object type...........................7
b. Resolve issues with exception handling of Babel smart-pointers7

7. Java ...7
a. Implement Array support (client and server)...7
b. Implement support for Objects as arguments (client and server)7

8. F90...8
a. Provide native access to Babel arrays (a.k.a. Phase III).........................8
b. Find solution for compilers that treat intrinsic functions as reserved
words ...8

9. Documentation ...8
a. More detail on SIDL language ..8
b. More Examples...8
c. More Tutorials...8

10. Platforms...8
a. AIX using native xl Compilers ...8
b. Revivify Solaris using gcc/SunF90 ...8
c. Linux64...9
d. Mac OSX ..9

Deferred Items ... 10

To-Do Items for 1.0

1. Parser

a. Regularize Type Resolution Behavior
The Babel parser currently is too aggressive in resolving user-defined types.

This currently results in problems of SIDL files needing to be specified in
particular orders and the two samples above resolving the return type of the
function foo.A.bar() differently. Clearly a lazy resolution technique is needed
where resolution phase is distinct from initial parsing.

package foo {
 class B {}
 class A {
 foo.B bar ();
 }
}

package foo {
 class A {
 foo.B bar ();
 }
 class B {}
}

b. Allow XML overwrites (added Oct 2004)
Sometimes users wish to refresh XML files based on modifications to their
SIDL sources. If the target XML files are co-located with other XML files
that are required for type resolution, then it is logical to use –o and –R flags
pointing to same repository. In this case, Babel will generate symbol
redefinition errors and does not have a flag to force overwrites.

2. SIDL
Every SIDL grammar change listed is an addition to the current SIDL spec.
Therefore, all existing SIDL files will be valid even after the changes are
released.

a. Add global scope indicator (.) (like leading :: in C++)
There are limited cases where presented with multiple options, SIDL gives no

easy way to specify exactly which choice the user wants. In the SIDL
example above, line 5 shows a method bar() that returns a foo.A. Currently,

1... p
2. class A { }
3. package foo {
4. class A {
5. foo.A bar(); // returns which foo.A?
6. }
7. }
8. }

this resolves to the class in the same package, and its not possible to refer to
the class A in the outermost package. Adding a leading dot (.) to the syntax
resolves this issue. The user could specify “.foo.A” to resolve the ambiguity.

b. Resolve issues with multiple inheritance induced
overloading

interface I1 {
 void set(in int i);
}
interface I2 {
 void set(in float f);
}

class C implements-all I1, I2 { }

The SIDL fragment above is currently invalid. The multiple inheritance of
interfaces would be fine if both set() methods had the same signature.
However, since they are different and since they are inherited from different
interfaces they are not overloaded. SIDL’s grammar and Babel’s parser need
to be augmented to cover this case.

Tentatively the new syntax would look like the following SIDL fragment.

Here, the equals operator allows us to redefine the name of a method that is
inherited, but does not allow the signature to be changed.

class C implements I1, I2 {
 void set[Int](in int i) = I1.set;
 void set[Flt](in float f) = I2.set;
}

3. IOR
Because the IOR is the key to Babel’s interoperability, we expect each change
listed here to be non-backward compatible with older IORs. Customers will
have to run the newer Babel code generator over their older SIDL files and
Impls to generate new IORs.

a. Access super methods in Impls
Often times in the implementation of a method, it is common to want to call
the parent class’s implementation. Babel currently stores the Entry Point
Vector (EPV) for the parent class as part of proper construction/destruction,
but the EPV is hidden in a static variable in the IOR.c file, and thereby not
exposed for the implementation to use.

We need to provide some equivalent to “super” methods in Java. Super
indicates methods in the super class (parent class) and is only available within
the implementation of the derived class.

As of December 2003, this activity is in the initial design stage. As of August
2004, work on the IOR is complete, and changes to all language bindings are
underway.

b. RMI hooks
Babel will define a SIDL interface standard for Remote Method Invocation
(RMI) and will generate hooks in the IOR to call those interfaces. This will
allow interested researchers with communication libraries to implement these
interfaces and plug their code into Babel.

As of December 2003, there are some hand-generated prototypes using Ken
Chiu’s Proteus multi-protocol library from Indiana University.

c. Pre/post method hooks
There are many cases where one may want to hook arbitrary code as a
precondition or postcondition of a Babel method invocation. Examples
include logic checking, timer insertion, flow traces, and QoS. Babel will
define and implement a general standard to satisfy the community’s interest in
this feature.

As of December 2003, we have received requirements from the TAU team for
instrumenting Babel code with timers. A draft proposal is in the design stages
and will be circulated to the babel-users list for comment.

d. Static Class Initializer a.k.a. “_load()” (added Oct 2004)
Create a user-defined method in all Impls that is guaranteed to be (1) envoked
at most once, and (2) envoked before any other user-defined code (including
static methods or constructors). This is useful (among other things) for
initializing singleton classes that have all static method accessors.

4. Runtime

a. Better shared library lookup in SIDL.Loader
When asked to load a symbol at runtime, the original SIDL.Loader would go
through its path, recursively opening every .so file looking for the symbol in
question. If the user set their SIDL_DLL_PATH to “/”, the SIDL.Loader
would find it… eventually. The problems with this all too permissive
approach were (1) it was hard to debug, (2) it would try to open things that
had a .so extension, but were not made to be dynamically loaded. (3) it was
too hard to control.

The SIDL.Loader implementation will be rewritten to be must less permissive
and easier to control and debug. The new implementation will rely on
auxiliary XML files to specify exactly what symbols are to be found in what
libraries.

As of December 2003, the SIDL.Loader is currently implemented and
introduces non-backward compatible changes. It will be released in the
upcoming Babel 0.9.0 release.

b. Move Base Classes from “SIDL” package to “sidl”
package

Unfortunately some C/C++ header files on some architectures #define SIDL
to be 4. This causes problems in C++ header files that put everything in the
namespace SIDL. We have always recommended that SIDL package names
be all in lowercase, but for historical reasons we haven’t followed our own
advice. Since the convention is that preprocessor macros are always all
uppercase, we are resolved to rename the SIDL package to lowercase.

This change should avoid preprocessor problems, but will introduce a non-
backward compatible change when released. As of December 2003, there has
been no work on this item.

c. Change SIDL.BaseException from a class to an Interface
This is of primary importance to standards bodies, such as CCA who want to
make their standard be all SIDL interfaces, but currently have to make the
exceptions SIDL classes because SIDL.BaseException is a class. This is an
artifact that we unintentionally carried from Java and we plan to be correct it.

As of December 2003, there has been some initial design work. We have
uncovered issues with Java bindings in response to this change that have yet
to be resolved.

DONE. Released in Babel 0.9.0.

5. Arrays

a. Increase max dimension from 4 to 7
DONE. Released in Babel 0.8.8

b. Array Base Classes (Added Oct 2004)
Promoted from list of deferred items. Can also be seen as a SIDL issue.
Users sometimes wish to specify an interface that takes arrays of arbitrary
dimension or type. DONE (mostly). Expected in Babel 0.10.0

6. C++
As of December 2003, Steven Parker from University of Utah has planned a
January visit LLNL and work out an alternative C++ binding to resolve the
related outstanding issues. Changing the C++ bindings is a BIG DEAL, but it
is necessary to resolve some thorny issues, and clear a path for SCIRun to
migrate from their C++-only PIDL tool (Parallel Interface Definition
Language) to SIDL and Babel.

a. Resolve issues with overloading based on object type
Babel’s C++ bindings predate Babel’s overloading mechanism. The C++
stubs simulate the SIDL inheritance hierarchy, but do not implement it
directly. The benefit is that method dispatch is slightly faster by
circumventing C++ vtables and going directly to Babel’s EPVs. The
downside is that once overloading was introduced, the C++ compiler doesn’t
have the right information to resolve the overloading.

b. Resolve issues with exception handling of Babel smart-
pointers

This is another unfortunate side-effect of Babel’s current C++ stubs. The
issue is that the C++ code cannot catch parent classes of the SIDL declared
exception, it must catch the exceptions listed in the SIDL specification
exactly.

7. Java
As of December 2003, we now have Java bindings that support all the basic
SIDL types (bool, char, int, float, long, double, fcomplex, dcomplex, and
strings), both client side and server side. However, arrays and objects remain
outstanding issues. Arrays and Objects are historically the most challenging
features of any language binding. The reasons for the delays in Java is that
Fortran became a very big deal for our customers and Java was put on the
back-burner.

a. Implement Array support (client and server)
Native Java arrays are not suitable for our purposes (appear to require copying
data in all cases). Python had a similar problem, but there was a single we-
established array library (Numeric) that was a natural fit. We have yet to find
a similarly obvious choice for scientific arrays in Java.

b. Implement support for Objects as arguments (client and
server)

There seems to be no outstanding technical issues to resolve, it is simply a
matter of finding an available pool of effort to throw at the problem.

DONE. Released in Babel 0.9.4

8. F90

a. Provide native access to Babel arrays (a.k.a. Phase III)

DONE. Released in Babel 0.8.8. Introduced new dependency on Chasm.

b. Find solution for compilers that treat intrinsic functions
as reserved words

Some compilers treat intrinsic functions as reserved words. Although Babel
does try to warn when reserved words in a particular language show up in a
SIDL specification, we think prohibiting all the Fortran 90 intrinsic functions
is a bit onerous. We hope to find a workaround before the Babel 1.0 release,
but this issue will not be a blocker for the 1.0 release.

9. Documentation

a. More detail on SIDL language
We will add an annotated EBNF specification of the SIDL grammar and walk
through more techniques about how to transfer favorite programming idioms
from different languages to SIDL.

b. More Examples
Our Users’ Guide has been described as encyclopedic and very dense. Users
have asked for more examples to reduce the slope of the learning curve in the
first couple sections.

c. More Tutorials
Babel has developed a half-day tutorial and delivered a dry-run to the CASC
summer interns in 2003. We will be polishing the viewgraphs, presentations,
and demonstrations for the 1.0 release.
DONE. Full day tutorial and hands-on to be presented at Supercomputing
2004

10. Platforms

a. AIX using native xl Compilers
DONE (mostly). Official support announced in Babel 0.8.6. Unresolved
issues with server-side python support.

b. Revivify Solaris using gcc/SunF90
DONE. Will be included in next release after Babel 0.8.8.

c. Linux64
DONE (mostly). Works with Babel 0.8.9, but not instituted in nightly testing.

d. Mac OSX

Deferred Items
The following items are frequently requested features. We know only that they
are not planned for Babel 1.0. There’s no telling if they will ever get into Babel
for that matter, but we haven’t removed them entirely from future considerations
either.

1. Adding type hierarchy information to sidl.ClassInfo
2. Change from Numeric Python to numarray
3. Stop generating IOR.c files with client-side binding

DONE. Expected in the 0.10.0 release.
4. Typed Opaques
5. Array Base Class(es) (promoted to issue 5.b. August 2004)

